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A FREE BOUNDARY PROBLEM ARISING IN BIOLOGY

This work was intended as an attempt to investigate a simple mathematical model cell. This model represents
a problem with free boundary for system of two differential equations, one of which is parabolic and another
one is elliptic. We apply a method which consists of the following. First, we construct a special system of
difference-differential approximating elliptic problems, then we prove some uniform estimates and pass to
the limit. We prove the existence of the classical solution.

1. Introduction.

In paper [1], the authors consider a physico-chemical model of a self-maintaining protocell
which undergoes a process of growth and dissolution that mimics biological cells. The
protocell can be visualized as having a porous structure maintained by building materials
with concentration C'; the structure is sustained only as long as C' exceeds a critical concent-
ration C*. Metabolism is maintained by nutrient material with concentration u which is
distributed in the entire space with u = 7 at oo (7 > 0). C and u satisfy a coupled system
of reaction diffusion equations:

c%g— — AC =u, Au=0in the cell ,

Ao = 0 outside the cell,

on the boundary of the cell

=" V= ~£ -8, 8>0,
on
n is the exterior normal, V}, is the velocity of the boundary, 3 is modelled by disintegration,
C' is concentration of the building material of the cell, o is concentration of the nutrient
material. The authors established various estimates and proved the existence and uniqueness
of the solution.

We think that it is more natural for this mathematical model to consider a two-phase
medium, replacing one of a boundary conditions by the Stefan condition. Besides, we consider
the problem in the three-dimensional space without assuming that the solution is radially
symmetric.

Statement of the problem. Let D = {z € R® : |z| < R}, Dy = D x (0,T). The problem
is to find the functions c(x,t), u(x,t) and domains Qr, G, which satisfy:

ae= agi_ = —Ur(ilf,t), Au = X(QT)u in QT UGT: (11)

where
QT = {(CE, t) € Dr: c(x,t] B 1}, GT = DT\ET,

a, T are positive constants, {2 is the domain of the cell, x(£2r) is the characteristic function
of the domain Q.
On the known boundary 0Dy

dE =0 uzi=uEY >0 (1.2)
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On the unknown (free) boundary vy = 0Qr N Dy = 0Gr N Dr

- +
o) =c (o) =1, Vo= oo X (13)

where n is the exterior normal of the domain €7, V;, is the velocity of the boundary points
in the direction n, ¢, ¢~ are corresponding limit values of the function.
The initial conditions are

c(z,0) =¢(z) >0, Qo={re€ D:y)>1} (1.4)

The aim of this paper is to study the existence of the global classical solution. The
paper is organized as follows. In section 2 we construct a difference-differential approximation
for our problem and study its properties. The properties of the fundamental solutions are
considered in section 3. In section 4 we prove uniform estimates and pass to the limit.

Note that similar methods have been used in [ 2], | 3].

2. Construction of the approximating problem.

We shall assume that the problem (1.1)-(1.4) has a classical solution. We multiply the
equation (1) by a smooth function 7n(x,t) which vanishes on D7 and integrate by parts:

f VeV + an — un — x(¢)n] dzdt = 0.
Dt
For any ¢ > 0 we introduce a function x.(7) € C®(R'):
x:(7) =0Y7 £ 1—¢g; yelr) =1V =2 1; x.l7) 20
We define the functions {¢*(z,t),u"(z, )} as the solutions of following problem:

des(z,t) _ Oxe(ct(z,1))
Aci(Zst)—a—p o= BB = yfz 1),

(2.1)
&(z,t) =0 on 8D x [0,T), c*(x,0) =(z) in D.

Avf(z, 1) — xe((z, 1))uf(z,t) = 0, u'(z,t) = p(z,t) on 3D x [0,T). (2.2)

THEOREM 2.1. Let »
’qZJ(.I‘) (= CQ—H'(D), @(%t) c H2+a,l+a;2('jj}')

and assume that the corresponding consistency conditions hold at t = 0,2 € dD. Then this
problem is solvable and

M
“CE(xr t)”H2+0‘1+°‘/2(D_T) 5 Hce(x}t)HH2+a.1+aI2('D_T} S E_Ul (23)
[ @, )| qrvapy < Mas @ € (0,1), u(z,1) >0, E(x,t) >0, (2.4)

where positive constants My, My, v do not depend on ¢.

Proof. As the coefficient of the function u®(z,t) in the equation (2.2) satisfies the
inequality
0 S )(E(CE(.’E, t)) S ]-s
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then, as is well known, see [4], we have the following estimate in Dy

0 < @ (1) < maxE(E,t)-
Dy
From this estimate it follows that the functions {u®(z,t)} satisfy the Poisson equation with
respect to the variable x with a bounded right-hand side. Then, as is well-known, the estimate
(2.6) holds. Let us transform the equation (2.1) to the form:

1 £ o e 08 el
a+ x!c(z, t)]Ac (,1) - —— = —v’(a,1),

ot

1
a+ x./[ct (2, t)] =
where ¢1, ¢, are absolute constants. Solvability questions of the problem (2.1) in Holder spaces
have been investigated in [5).
We divide the cylinder Dy by the planes t = kh,k = 1,2,..N,Nh = T, integrate
equation (2.5) with respect to the variable ¢ from (k — 1)Ah to kh and multiply the equation
by 1/h. After simple transformations we obtain:

G (2) = G (®) _ xe(6(2)) = xe(Gia (2)

0<ee<

Ca,

Aci(z) — a- - ” — u(x) — f, (2:5)
c&(x) =0 ondD, c(z)=1v(zx) in D, (2.6)
Aug(z) — xe (g (7))ui(z) =0, (2.7)
ug(x) = pr(x) = p(x,kh) on 8D. (2.8)
where "
6i(2) = ¢(x, kh), ui(@) = v (@, k), || FE]| ooraomy < “E—'vhﬂfi’, (2.10)

where M does not depend k, <.
REMARK 2.1. The equation (2.5) can be transformed to the form

ci(z) — G (2)
h

Acy () — ai(z) = —ui(z) = f, (2.11)

where ai(z) = a + bf XelCioi () + 7(G(2) — ¢y (2))]dr.

3. The fundamental solutions and its properties.

To study properties of the solution of (2.5), we shall use an integral representation.
In order to do that we shall construct the fundamental solutions. Consider the family
{Tm-ks1(lz — zo|)}, k = 1,2,...m defined as follows

ih (sinh /zR)"!sinh \/z(R — |z — m¢|)dz
2nam J 4|z — zo|(1 - 2)(1 - %)(1 — %) )
aL mn m—1 a

Fmk1(lz — @ol) = (3.1)

a.

where

9

L={z=£+z‘n:Rez>—%, |2| < o}, (%,0),(0—;,0),.” (%,0) €L, a;>0.
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The numerator and denominator of the integrand have the same branch point z = 0.
Therefore, in the domain L it is possible to choose a univalent branch of the integrand
by setting, for example, v/1 = 1.
Denote
am

Wm-tr1(2) = (2= )z - “”;f‘)...(z - %).

The integral (3.1) can be calculated through the theory of residues. It gives

ih sinh[\/2(R — |z — Zo|)|wm—k+1(0)dz

2Ty, dr|x — x| sinh[v/ZRwm—k+1(2)
oL

Cin—t41(|lT — 30]) =

h =1 Wm—k (0) -
_— ——_— —“_EF._,I&(_

1 |‘T' - :E()l),
am 1=k LU:TI—k-i—] -E) h

where

o sinh [VE(R = |z = 2))]
K(z, |z — zo|) = Am|x — xo|sinh[\/ZR]

Property 1. If |z — | # 0, then the functions {T—k1(|z — 20|} satisfy the equations

Bt = [l
AT g ity — "““h 2 k=0, Vk=1..(m-1), (3.2)

if k =n, then

I
h_

sinh \/%2(R — |z — z|)
4| — zo|sinh /2R

This statement can be obtained by direct calculation.

ATl — ap 0, Ti(lz—xzo|) =

Property 2. Let Ks(xy) denote the ball with its center at the point zo and radius 6.

Then oL L ifk
. m—k+1 _ y YR =1,
El—% j{ on a3= {0, if k #£ m,
dKs(zo

where n is the inner normal.

Proof. Indeed, if £ < m, then

ih sinh[\/2(R —8)] /zcosh[y/z(R — 6)] Wm—k+1(0) ,
j{ [ ( Ar62\/zR  4mdsinh(y/zR) ) dswm_k.,.l(z)dz B

lim
6—0 27y,

L 8Ks(zo)

(0)
= lim f [ Wm k1 d =:0J,
=0 Q?Tam Wm— k+1 2
L Ks(xo)

as the sum of residues at all singular points, including the infinity, is equal to zero. If k = m

then we obtain ar " p
lim P f E ]

6—+0 on 2T Ay — zh
Ks(zo) L 2
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Property 3. Let {u(z)} € C*(D} and

ApUp — Qp_1UR_ = o
Auy, — Uk k=11 Se = fkm

h h

where f, € C(D) is given function. Then we have the following integral representation

- - arm
o o f (aouo — fo)T - (| = wl) ;- _Z [ > OMmktr

Kg(zo) k= 131&}?(10)

= m rm—.
+Z / i "“h kda. (3.3)

*=19K (o)

This integral representation follows from the previous properties of the fundamental
solutions and Green’s formula for the elliptic equations.

Property 4
f Lo (lz — mondx < f Loa(|z — IDde = e [ Il $0|)d$ o
h h h
Kg(zo) KRg(zo) Kpg(zo)

1 VE | 1
= (1 - W\/’;%—R)) ; Cpl|l@—aply & . (3.4)

Proof. If x # x, then

e
h

Vi NP X mk — 0, Vk=1...(m - 1).

In addition to that, we have

1, ifk=m, _ _
. llﬁl—»o Am|z — 2o|Tm—k+1(lz — To]) = {0, ikt m FCm—k+1(R) = 0. (3.5)

The maximum principle implies

arm—.||c+1

Fm_k+1(|$ . .’.CUD > 0 n KR(QS()), a‘n

<0 on OKg(zy).

Hence Vk < m

Kg(wo) Kgr(zo)

The second estimate (3.4) also follows from the maximum principle.

Property 5. The functions {Um—g+1(|x — 2o|) = Din—r(|x — 20])} change the sign on the
interval 0 < |z — 29| < R no more than once.
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Proof. Denote r = |x — x¢|. The functions {r[,,_x+1(r)} satisfy the equations

2 T _ B
%(T'Pm—k+l(7‘)) = ﬂk? k+1(r)h rTm-i(r) =0y k=120 ~1.

If k =m — 1 in this equation then

& 1) — s 2 )

dr?
lim vl (r) =dr, Ti{R) =0
r—0

=0,

This implies that rI";(r) > 0 Vr € (0, R). Near the point 2 = x4 the function
rIa(r) — rT'1(r) < 0 and it satisfies the following conditions:

d? rLa(r) — rT'1(r) r[y(r)

W(TFQ(T) - T‘Fl(?")) — Am—1 i = —&mT < 0. (36)

Let us assume now that the function
rI'a(r) —rT'1(r) changes its sign at a point ro; € (0, R). The maximum principle implies that
this function can not take negative values as at the ends of the interval (ro;, R) it is equal
to zero, and inside the interval it satisfies the equation (3.6). Let us prove, that the function
rI'3(r) — rI'3(r) changes its sign on the interval 0 < |z — 23| < R no more than once. This
function satisfies the equation

%(rrg(r) TSR = rCa(r) _ _, () = rTa(r)

and at the end points of the interval (0, R) it is equal to zero. Notice that the right-hand
side of this equation is positive near the point r = 0. We will prove at first that function
rI's(r) — rT'o(r) is negative near the point 7 = 0 . Suppose that on an interval (0,75,) there
is a point r32, at which the considered function is equal to zero. Then on this interval, as
follows from the equation, this function cannot have a positive maximum and is, consequently,
negative. Let us suppose now that the point at which the function is equal to zero, belongs
to the interval (ry;, R). Then the function rI's(r) — rT'5(7) can not change its sign from plus
to minus at this point because on the interval (r32, R) the function cannot have a negative
minimum. Besides, from

fam_Qra};era:: f Alsdz = / %dsm},

Kr(zo) Kr(xo) 9K Rg(zo)

it follows that the function rI's(r) — rT's(r) can not be everywhere positive. Thus, there is
an interval (0,732), in which it is negative. Assume that at the point r3, the considered
function changes the sign from minus to plus. Then on the interval (0,75;) the function
rI's(r) — rI'a(r) cannot be equal to zero, as it can not reach on it a positive maximal value.
Similarly, there can not be changes of sign on the interval (ro, R). Let 35 belong to the
interval (723, R). Then on the interval (ro;, R) the function is everywhere positive. Thus,
the considered function can change the sign on the interval (0, R) no more than once.

To complete the proof it suffices to apply the method of mathematical induction.
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Property 6. We will denote by i —y the points, where the functions Ty (r)—T_1(r), k=
1,2..m, are equal to zero. Then we have the inequality rrr—1 < Tki1k, and

s Wl A0y e o, JOLEIO ‘__ark(?-) .3
am—l = \/@ a?‘ r=R BT r=R
Proof. The functions I'y(r) — I'y_;(r) satisfy the equation
It r—xo|) —Te(lzr —z
A(Tusn(le = zol) = Tl = z0])) ~ ap - 122 = Tello =2
8 - —I'iq(lz— =
= =g k(|2 — o) . k—1( 0|)' (3.8)

We construct an integral representation at the center of the sphere K, ., (2o)

Te(jz — zo|) = T (| — 3?0|)1-1

[k41(0) = Tx(0) = f Am—k-+1 T

Kri 41 (0)

(|l — xo|)dz =

= - f (rk+1(|i‘7—3¢0|)“rk(|$“$o|)%d8=

OKry, 441 (20)

sinh v TR £ (7 k+1,k |$ 330')
3
Il(l:B 'TUD =

4?T|33 — ZI?Q' sinh A/ a";;k Th41.k

Taking into account that the function I'yi(r) — T'x(r) is equal to zero at the points r =
0,7k414 = 0, we obtain

0= f Diri—kid Ik(lz — @0)) —hr'k-1(|$ — Zo|)

I'1(|z — xo])dz.

Krk,k._'_l(rﬂ}

If Pk k-1 > Tk, then this equality is impossible.
Formula (3.1) implies

Arc|x — zo|T1(|z — o|) = e~ *WVH + 0 (e—Rﬁ) ,
4?T|-T = $0|r2(|x —_ ;I,‘Ol) — ;“ZI‘L_ (e—lx—xoha’ﬂ? _ e"“‘““"“W) 4

pm—1 — G

40 (e—R\/@) . S,

Ar|z — o|T2(|z — zo|) = i;_—ﬁje_h*mi” 40 (G_RV g’x‘n) if .am—1 = am.

From here we obtain

Inay,—; —Ina,
ro1 = Vh +o(h) h—= 0.
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In particular, if a,,_1 = am, then

2
Ta1 = \/F-“'—@

The function I's(r) — T'y(r) changes the sign once. Therefore, as follows from the equations
(3.8), the functions I'y(r) — I'y_1(r) change the sign once too. It means that the inequalities
(3.7) hold.

Property 7. We have the following estimate

ol'y 1 R Tx?

on
where ¢ > 2, and positive constants My, My do not depend on N, h, R.

Proof. Let us estimate integral

% _ —ih f vz dz (3.10)
on B 2man / 27 Rsinh(y/zR) (1 — %)(1 i i‘f)---(l — %)a

where dL is the boundary of the domain

(1+¢q) max ay 9 max ag
1<k<N s 1<k<N
L={Z:Q=|Z|< 7 ,R€Z=b0>—ﬁ,bg<0,g>—"?i——_}

Let us represent the integral (3.10) as a sum of two terms: I; and I,, where I; denotes the
integral along the part of the curve dL which is an arch of a circle, and I, denotes the integral
along the part of the contour which lies inside the straight line Rez = by. Let us estimate
the integral I;. The estimates

N

lz1h i 2 qN,

h
P 1

zh zh
1-2ha -2 )‘ >

ay Omax

|sinh(v/zR)| > sinh[+/|2| R cos(argz/2)] = sinh[/|z|R cos ¢],
where ¢ — %, if h — 0, imply
1 R
L < e;—— —Cy——
I < e 5rg expl—e2 7o)

where the constants ¢; and ¢, do not depend on h. Let us now estimate the integral I. As
Rez = by, we obtain

e
zh zh zh lbo] \ *
1—-—)(1-—)...(1——7)[>(1+h .
‘( a, )( a2) ( aN) bt ( Qmax
Assume by = ——2%‘ Then Sinh'f}; < ¢4. Thus we obtain

T2
15| < cs exp{—R2 }

max

33



M. A. Borodin

The constants 3. ¢4, ¢5 do not depend on h.

4. Uniform estimates. Passage to the limit.
THEOREM 4.1. Let the following conditions hold:
(l) & 02+0(D) 3, f) & Hre J14af/2 D )

and we will assume that corresponding consistency conditions hold at t = 0,z € 0D. Then
Vh > 0,Ve > 0, such that

1 1
e (4.1)

82:; > h(?“"})a_l,
24 a 2

there exists a constant ¢, which does not depend on h, e, k, such that the following estimate

holds: i i
c;c(;r) — ci_4(z)
h

¢ (2)
83:3-

max
z€D,1<k<N

+ _max
€D, 1<k<N

g (4.2)
where

D= D\wo ; ..Ug(&)—-—{ilGD ].<’¢’()<1+€}.
If the functions {F{(x)} are twice differentiable and

Cha}'?
| Fi(x) ||02+“(D)< e

then the following estimate holds

e (@)l gogpp, < € (439

where
D* = D\ wle), we(e) ={r e D:1<c(z) <1l+e}.

Proof. Let xy be an arbitrary point in D. Let us rewrite the equation (2.9) in the
following form

Alci(z) — ¢y ()] - ai(xn)ci(x) —hci“l(x) + ai_l(;gu)cf‘—l(x) ; Ci—2(2) _

—(ag(2o) — ai(x))ci(a:) —hci_l(;r) + (ag_q(x0) — afc_l(;g))ci—l(x) ; Ci_o(7)

—Ft(2) + FE_ ().

In order to obtain the estimate for the functions {¢; — ¢}_;} we will use the integral
representation (3.3). Denote by Kg(z) the sphere with the center at the point z; of radius
R = h”. We obtain

o) ~Gaa) = [ [Beo(o)+ @)l mmZ [ -G

Kg(zo) ~LoK r(zo)
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+3 [ w0 - @) EL=E D e - ) — Tl - aublde

h
k=1KR[-'~"U)
m
+Y Fi(@) [Tmpr1(lz — 2o|) = Tmei(|z — 2o)de = L+ L+ L + I,
*=1K p(zo)

Let us estimate every term. The relations (2.3) and (3.4) imply

h1+a;’2

L] <

h
e ma&(mco (z)| + |F (=)]) £ = mahmco(l‘ |+ a1
m To) ze zeD

From (2.3), (3.7) and (3.9) it follows that

T 1 R Tr? }}
— max | —cp1|Mi —exp{—-Mo—=)+expq ——— £
h xGﬁ}lgng | 5 g 1| ' { QNR p{ . \/H} = { Rzamax &

Co C3€ I _
< geo{-g} < e { e} = o)
where the constants cs, c3 do not depend on h, .
From (2.3), (2.4) and from properties (4), (6) of the fundamental solutions we obtain

I“m—— _rm—.
|fs|<Z [ R e ) - e Tt It

2€D,1<k<N h
=K r(zo0)

< [ B e g - gy

v
Kr‘g‘l (1'0)

|I2| <

2 x€D,1<k<N h

clr — xpl® 2 1
+ f P ek Jeila) - iy (@) e <

€ zeD,1<k<N hlz — xo
KR\Krg__] (IUJ

he h{2+&)rf—-—l
S Ch (8_2: -+ _5211 ) P

The similar estimate takes place for I;. Near the boundary of D the equations (2.5) and (2.7)
turn into linear equations with constant coefficients. Therefore, the appropriate estimates
can be easily obtained.

We differentiate the equation (2.5) with respect to one of the variables z; and transform
it to the following form:

B — B, (i) — @) — B @0) — @)
G h & h Flea

where b%,(z) = a + x.(c})-
We use the property 3. It gives

m

)= [ wg@imli=oly 3 [ gttty

Knr(zo) k=1oK n(z0)
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m

Z / (55 (o) — b (2))c (=) Con—ies1(|z — SL‘oDh— rm-k(|ﬁ?—$0|)dx+
o

I\R(To)

> [ E@Tnsnlso-alds (4.4)

k=1 g p(zo)

From this integral representation, applying the same reasoning as above, we obtain the
second part of the estimate (4.2). The proof of (4.3) is quite similar.

THEOREM 4.2. Let the following conditions be satisfied:

Y(z) € C***(D), p(z,t) € H*T*2(Dr), min |Vy(z)| > 0
e}

and we will assume that corresponding consistency conditions hold at t = 0,z € dD. Then
Vh > 0,Ve > 0, such that

1
<0< =,

2v (24a)o—1
e 2l 3
= 2+a 2

there exists a constant ¢, which does not depend on h,c, k, such that the following estimate
holds:
MG )] = el Ve B, & =ik2 (4.5)

Proof. Notice that the first term in the right-hand side of (4.4) can be estimated as
follows

f be e:( m k—i—l(}!ﬁ? - vU(ll)d:L, > Cné%lld"(i” —i—O(h-a’Q).

rl(zo)

Similarly to the previous theorem it is possible to prove that all other terms in the right-hand
side of (4.4) have limits equal to zero when h — 0.

Let the function n(xz,t) € C*!(D) be equal to zero on (9D x (0,T)) U (D x (t = T)),
nk(z) = n(x, kh). We multiply (2.5) and (2.7) by hni.(z), integrate it over D, and take the
sum over k from 1 to N. After simple transformations we obtain

hZ/{Vc&Vnk =k ( — Cr_1)Mk — XE(CE)% + (ug, + fi)metdz =0
k=13

hZ f{VukVnk + Xe(cp)upme }dz = 0.
k=13
Let us denote by ¢(z,t, h,c), u(z,t, h,£) the piecewise linear interpolations of the functions
{ci(x)}, {u;(z)} with respect to the variable ¢,

elat) = alrizllloﬁ(m’t’h’s)’ wle;t] = lim Tz, t,h6);

g,h—0

where h, ¢ satisfy the conditions (4.1). The possibility of passage to the limit follows from
the statements proved above. As a result we obtain
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THEOREM 4.3. Let the following conditions be satisfied:

¥(z) € C***(D), ¢(,t) € H***'**/2(Dy), min|V4(z)| > 0
zeD

and we will assume that corresponding consistency conditions hold at t = 0,x € dD. Then
VT > 0 there exists a solution of the problem (1.1)-(1.4) and

C(.I?,t) € C("D";) N (H2+a,1+a{2(Q_T) > 1;[2—i-cr,1+or;’2(G_T))1 u(:r;t) & Cl+a‘1+a;‘2(D_T);

the free boundary is given by the graph of a function from H2*te1Te/2 clggs,
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